Sift Logo Several blue dots forming a sphere to the left of the word Sift in italic font.
  • Products

    Digital Trust & Safety Suite

    Fight fraud without sacrificing growth

    Learn more →

    Passwordless
    Authentication

    Account
    Defense

    Content
    Integrity

    Payment
    Protection

    Dispute
    Management

    Sift
    Connect

    PSD2
    Solution

    New Releases & Enhancements

  • Partners

    Sift Partner
    Program

    Join the leader in Digital Trust & Safety

    Learn more →

    Commerce platform partners


  • Industries

    One solution, many applications

    Learn how Sift can work for your industry

    Learn more →

    Featured industries


    Fintech

    Retail

    Food & Beverage

  • Customers

    See case studies by industry

    Sift works across every use case and region

    Learn more →

    Featured customers


  • Resources

    Explore our resources

    Access trends, guides, and insights from Sift

    Learn more →

    Blog

    Ebooks

    One Pagers

    Demos

    Videos

    Webinars

    Infographics

    Podcasts

    Trust & Safety University

  • Fraud Center
  • Company

    Why leaders choose Sift

    Technology, community, and partnership

    Learn more →

    Our mission: Help everyone trust the internet


    About

    Careers

    News & Press

Request a demo
Products
  • Digital Trust & Safety Suite
  • Passwordless Authentication
  • Account Defense
  • Content Integrity
  • Payment Protection
  • Dispute Management
  • Sift Connect
  • PSD2 Solution
  • New Releases & Enchancements
Why Sift
  • Salesforce
  • Magento
  • Shopify
Industries
  • Fintech
  • Retail
  • Food & Beverage
Customers
Resources
  • Blog
  • Ebooks
  • One Pagers
  • Demos
  • Videos
  • Webinars
  • Infographics
  • Podcasts
  • Trust and Safety University
Fraud Center
About
  • Search Careers
  • Our Company
  • Contact Us
  • Engineering Blog
Request a DemoSign In
  • Blog Home
  • Product News
< prev / next >
Share this article on LinkedIn
Tweet this article
Share this article on Facebook
SOCIALICON
Share this article via email

Feature Spotlight: Piecing Together a User’s Identity

By Jonathan Hsieh  / 

11 Feb 2016

We love giving our users an opportunity to discover more about what’s going on behind the scenes. Sometimes we’ll hear one of our customers say, “Can machine learning really do that?” or “Wow, I didn’t realize that’s how Sift Science worked!”

In our Feature Spotlight series, we give you a peek under the hood of Sift Science and dig into the various features that make up our machine learning platform. In each post, we’ll examine one of the features that Sift Science analyzes to detect fraud – ranging from “Does the user share a Device Fingerprint with a known fraudster?” to “transaction velocity over the past day”. Check it out and send us your questions!

In the world of fraud detection, one of the most important checks that you’ll undertake is verifying someone’s identity. “Is this a real person?” “Can I trust that they’re actually who they say they are?” And at Sift Science, we’re invested in helping you answer these complex, crucial questions as quickly and confidently as possible.

For one thing, we aim to make it easy to verify a user’s identity using our web console. On the User Details page, there’s an entire section specifically dedicated to showcasing identity-related information so you and your team can authenticate a user. What names are listed on their account? How about phone numbers? Do they have any presence on social media?

identity-section-1

But that’s just the tip of the iceberg. Behind the scenes, our machine learning technology is analyzing a bunch of identity-specific signals and incorporating those learnings into our predictions.

To start, as it’s sifting through tetrabytes of data, our platform automatically detects whether each particular piece of that data is related to a user’s identity and how, so our machine learning can make the most of that information.

Here are just a few examples of how Sift Science’s machine learning uses this info:

Linking identities

Has a single user created multiple accounts on your site? Our machine learning technology can link together identifying information like name, email address, and social media information – in addition to behavioral and device-specific signals – to let you know they’re actually the same person. We can even match variations on names, like Bill, William, Will, Billy, Willie…you get the picture.

You may have seen our recent blog post covering typos and word choices that are more likely among messages posted by fraudulent users. Well, we can also use these postings and messages to help link accounts together, based on similarities between the wording they use.

Name changes

Billing address name keeps changing? That’s a major red flag for credit card testing on an account. We track all name changes (as well as other key signals like updated credit card information), and they weigh heavily in how we determine whether a user’s up to no good.

Phone numbers

Similar to how our machine learning technology analyzes email addresses, phone numbers offer a goldmine of useful information for detecting fraud. We extract as many signals as possible, such as whether it’s a landline or a mobile phone, the number’s carrier or network, and geographical information based the area code.

Identity signals are indeed crucial for detecting fraud, but they’re just a few of the thousands of signals analyzed by Sift Science’s machine learning platform. Want to learn more? Check out some of the other posts in this series, like how we analyze user behavior patterns to help detect fraud.

Related

Jonathan Hsieh

Jonathan Hsieh was a Product Marketing Manager at Sift.

  • < prev
  • Blog Home
  • next >
Company
  • About Us
  • Careers
  • Contact Us
  • News & Press
  • Partner with us
  • Blog
Support
  • Help Center
  • Contact Support
  • System Status
  • Trust & Safety University
  • Fraud Management
Developers
  • Overview
  • APIs
  • Client Libraries
  • Integration Guides
  • Tutorials
  • Engineering Blog
Social

Don't miss a thing

Our newsletter delivers industry trends, insights, and more.

You're on the list.

You can unsubscribe at any time. Please see our Website Privacy Notice.

If you are using a screen reader and are having problems using this website, please email support@sift.com for assistance.

© 2022 Sift All Rights Reserved Privacy & Terms

Your information will be used to contact you about our service and subscribe you to our direct marketing communications. You can, of course, unsubscribe at any time. Please see our Website Privacy Notice.