Sift Logo Several blue dots forming a sphere to the left of the word Sift in italic font.
  • Products

    Digital Trust & Safety Suite

    Fight fraud without sacrificing growth

    Learn more →

    Passwordless
    Authentication

    Account
    Defense

    Content
    Integrity

    Payment
    Protection

    Dispute
    Management

    Sift
    Connect

    PSD2
    Solution

    New Releases & Enhancements

  • Partners

    Sift Partner
    Program

    Join the leader in Digital Trust & Safety

    Learn more →

    Commerce platform partners


  • Industries

    One solution, many applications

    Learn how Sift can work for your industry

    Learn more →

    Featured industries


    Fintech

    Retail

    Food & Beverage

  • Customers

    See case studies by industry

    Sift works across every use case and region

    Learn more →

    Featured customers


  • Resources

    Explore our resources

    Access trends, guides, and insights from Sift

    Learn more →

    Blog

    Ebooks

    One Pagers

    Demos

    Videos

    Webinars

    Infographics

    Podcasts

    Trust & Safety University

  • Fraud Center
  • Company

    Why leaders choose Sift

    Technology, community, and partnership

    Learn more →

    Our mission: Help everyone trust the internet


    About

    Careers

    News & Press

Request a demo
Products
  • Digital Trust & Safety Suite
  • Passwordless Authentication
  • Account Defense
  • Content Integrity
  • Payment Protection
  • Dispute Management
  • Sift Connect
  • PSD2 Solution
  • New Releases & Enchancements
Why Sift
  • Salesforce
  • Magento
  • Shopify
Industries
  • Fintech
  • Retail
  • Food & Beverage
Customers
Resources
  • Blog
  • Ebooks
  • One Pagers
  • Demos
  • Videos
  • Webinars
  • Infographics
  • Podcasts
  • Trust and Safety University
Fraud Center
About
  • Search Careers
  • Our Company
  • Contact Us
  • Engineering Blog
Request a DemoSign In
  • Blog Home
  • Fraud
< prev / next >
Share this article on LinkedIn
Tweet this article
Share this article on Facebook
SOCIALICON
Share this article via email

Are You Auto-Blocking Good Customers? How to Tell

By Yoav Schatzberg  / 

5 Apr 2016

Automation may be the Holy Grail of efficient fraud management, but setting up a system that works for your business takes a healthy dose of care and thoughtfulness. It’s one thing to set your fraud tool up to automatically block and accept orders, based on a user’s risk. But how do you know that you’re setting the right risk thresholds?

The challenge of measuring false positives

It’s easy to tell when you’ve accepted an order that actually should have been rejected. You get hit with a chargeback or some other unpleasant surprise like an angry call from an upset cardholder. But what about the inverse situation? How do you know that the orders you rejected were actually fraudsters and not good customers caught up in the fray?

This is called a false positive, or customer insult, and is a more difficult problem to solve. If a customer can’t complete their order on your website they might call you to figure it out. However, chances are better they’ll end up going to one of your competitors – who won’t block them from purchasing the goods. Not only have you lost that particular sale, but will that customer ever return to your site? This is your worst case scenario – and one that keeps fraud and risk teams up at night. According to the Sift Science Fraud Trends 2016 Report, 76% of businesses facing fraud are concerned about turning away good customers.

How to tune your auto-block thresholds

Thankfully, there are ways to remedy the situation. It’s starts with accurately measuring how many false positives you’re inadvertently auto-blocking, and then using those findings to tweak any automation thresholds you have in place.

The first step is to isolate a small control group, from among all of the orders that would be blocked as part of your usual fraud process. Then, let all of these orders through, accepting them regardless of your fraud tool’s decision. Finally, as you start to receive chargebacks, go through the orders from the control group to determine how many of them are actually fraudulent. Once you know this proportion, you can determine whether you need to adjust your auto-block thresholds.

How this method works in practice

Here’s an example of how a surfboard manufacturer could measure their auto-block false positive rate, using Sift Science:

Surfboards Inc. runs an online shop in an attempt to expand their customer base, and uses Sift Science to prevent chargebacks from fraudulent orders. Based on their experience using the tool, they’ve found that (generally speaking) any order with a Sift Score greater than 90 is highly likely to be fraudulent and should be blocked automatically.

But they want to test this hypothesis. So they decide to let through 1% of orders that would usually be blocked by Sift Science. This way, they can evaluate what percentage of their automatically blocked orders (orders with scores above 90) result in chargebacks.

After examining the data, Surfboards Inc. realizes that of the orders in their control group, 5% did not result in a chargeback.

Total orders w/ Sift Score > 90 = 1,000

Chargebacks = 950

No chargebacks = 50

False positive rate = 5%

They would love to move this number even lower, so they change their fraud logic to automatically reject orders with scores over 95 instead. They repeat this process on a rolling basis, continually evaluating their control group.

“But I can’t afford to let fraud through…”

Of course, not every business will be comfortable accepting risky orders – even for a short time. Maybe you’re a smaller company, or you’re concerned that fraud would seriously damage your bottom line. In that case, there are other tactics that could give you insight into how many of your rejected transactions are actually good customers. For example, you could request that anyone who places an order that’s blocked contact you via email or phone.

This way, you can determine more carefully if the person trying to purchase from you is a fraudster or not. The tradeoff between these two methods is that with the latter, you spend significant energy on verifying users; with the former, you’re allowing a small percentage of fraud through. The path you choose will heavily depend on your business’ specific situation, goals, and needs.

Is it even possible to have a 0% false positive rate?

Of course – with Sift Science! Just kidding. We would love to make that claim, but in all honesty, if you’re like most businesses who are facing fraud the only way to have a 0% false positive rate at all times would be to let through 100% of your customers.

But in that case, of course, you’d be opening yourself to the risk of a sky-high fraud rate. Or else, you’d have to hire a giant team of people to manually review a large proportion of your orders and weed out the fraud. That’s why we highly recommend automating as much of your fraud review as possible, and using a method like the one described earlier to continually tune your fraud management strategy.

We hope this helps add some color to how you can make sure your fraud automation approach is working for you. Questions? Feel free to reach out anytime at support@siftscience.com.

Related

featured

Yoav Schatzberg

Yoav Schatzberg was a Solutions Engineer at Sift. Before Sift, Yoav worked as a Software Engineer on Software Defined Networking at Intel.

  • < prev
  • Blog Home
  • next >
Company
  • About Us
  • Careers
  • Contact Us
  • News & Press
  • Partner with us
  • Blog
Support
  • Help Center
  • Contact Support
  • System Status
  • Trust & Safety University
  • Fraud Management
Developers
  • Overview
  • APIs
  • Client Libraries
  • Integration Guides
  • Tutorials
  • Engineering Blog
Social

Don't miss a thing

Our newsletter delivers industry trends, insights, and more.

You're on the list.

You can unsubscribe at any time. Please see our Website Privacy Notice.

If you are using a screen reader and are having problems using this website, please email support@sift.com for assistance.

© 2022 Sift All Rights Reserved Privacy & Terms

Your information will be used to contact you about our service and subscribe you to our direct marketing communications. You can, of course, unsubscribe at any time. Please see our Website Privacy Notice.