Sift Logo Several blue dots forming a sphere to the left of the word Sift in italic font.
  • Products

    Digital Trust & Safety Suite

    Fight fraud without sacrificing growth

    Learn more →

    Passwordless
    Authentication

    Account
    Defense

    Content
    Integrity

    Payment
    Protection

    Dispute
    Management

    Sift
    Connect

    PSD2
    Solution

    New Releases & Enhancements

  • Partners

    Sift Partner
    Program

    Join the leader in Digital Trust & Safety

    Learn more →

    Commerce platform partners


  • Industries

    One solution, many applications

    Learn how Sift can work for your industry

    Learn more →

    Featured industries


    Fintech

    Retail

    Food & Beverage

  • Customers

    See case studies by industry

    Sift works across every use case and region

    Learn more →

    Featured customers


  • Resources

    Explore our resources

    Access trends, guides, and insights from Sift

    Learn more →

    Blog

    Ebooks

    One Pagers

    Demos

    Videos

    Webinars

    Infographics

    Podcasts

    Trust & Safety University

  • Fraud Center
  • Company

    Why leaders choose Sift

    Technology, community, and partnership

    Learn more →

    Our mission: Help everyone trust the internet


    About

    Careers

    News & Press

Request a demo
Products
  • Digital Trust & Safety Suite
  • Passwordless Authentication
  • Account Defense
  • Content Integrity
  • Payment Protection
  • Dispute Management
  • Sift Connect
  • PSD2 Solution
  • New Releases & Enchancements
Why Sift
  • Salesforce
  • Magento
  • Shopify
Industries
  • Fintech
  • Retail
  • Food & Beverage
Customers
Resources
  • Blog
  • Ebooks
  • One Pagers
  • Demos
  • Videos
  • Webinars
  • Infographics
  • Podcasts
  • Trust and Safety University
Fraud Center
About
  • Search Careers
  • Our Company
  • Contact Us
  • Engineering Blog
Request a DemoSign In
  • Blog Home
  • Fraud
< prev / next >
Share this article on LinkedIn
Tweet this article
Share this article on Facebook
SOCIALICON
Share this article via email

Mobile e-commerce fraud detection insights

By Sift  / 

30 Jul 2013

Mobile e-commerce is exploding. In the US, 56% of people already own smartphones. Internationally, adoption projections for countries like China show this trend is just beginning. Unfortunately, with the increasing limitations on mobile device fingerprinting, mobile e-commerce fraud detection has also become more complex.

Less data, mo problems

Mobile fraud suffers from two data-related problems: merchants ask for less customer information and the device data they do collect is less useful. Merchants request less info because conversion stands as their greatest challenge. Specifically, mobile customers give up nearly half their shopping attempts because the process takes too long. While the prioritization of conversion and growth over fraud detection is understandable, merchants are increasing their risk.

Besides the fact that some traditional signals are unavailable on mobile devices (e.g. IP-based location), merchants are finding that remaining data is often insufficient. In May, Gartner estimated that ~40% of mobile devices could not be uniquely identified…quite problematic as fraudsters shift to mobile along with legitimate customers.

Unique mobile e-commerce fraud detection patterns

Large-scale machine learning solutions like Sift Science provide a competitive advantage due to their breadth and flexibility. Two examples from our data illustrate machine learning’s power in e-commerce fraud detection. First, when comparing top fraud signals for a desktop web site to a mobile app, we found almost entirely different predictive fraud patterns (see table).

Top fraud patterns: desktop versus mobile
Top fraud patterns: desktop versus mobile

Notably, while behavior matters in both environments, the nature of in-app navigation requires a detection solution able to take into account the unique way each app is designed.  At Sift, we do this by accepting custom events. These are crucial in understanding whether a customer is a potential fraudster. The results also make a strong case for capturing more data, given the potential for any pattern to be predictive in detecting fraud.

New accounts: always riskier?

As a second example, consider the common belief that transactions from newly created accounts are riskier. In fact, our system uncovered a more nuanced reality, one difficult to detect without machine learning.

Suspicious purchase activity
Suspicious purchase activity

Why might this be? Many sites have a “sign up when you make your first purchase” option that’s used by legitimate customers. In contrast, fraudsters tend to create accounts and then go shop for merchandise. Of course, time ranges will differ between companies, so custom variables are crucial for a fraud detection system.

These mobile e-commerce fraud detection insights demonstrate how a large-scale machine learning based solution not only catches more fraud, but also more efficiently identifies legitimate customers. Check back here often (or sign up for our email list) because we’ll be covering other fraud-related topics in future posts, such as technical aspects of mobile fraud and a look at fraud by country.

Related

fraud detectionmobile

Sift

  • < prev
  • Blog Home
  • next >
Company
  • About Us
  • Careers
  • Contact Us
  • News & Press
  • Partner with us
  • Blog
Support
  • Help Center
  • Contact Support
  • System Status
  • Trust & Safety University
  • Fraud Management
Developers
  • Overview
  • APIs
  • Client Libraries
  • Integration Guides
  • Tutorials
  • Engineering Blog
Social

Don't miss a thing

Our newsletter delivers industry trends, insights, and more.

You're on the list.

You can unsubscribe at any time. Please see our Website Privacy Notice.

If you are using a screen reader and are having problems using this website, please email support@sift.com for assistance.

© 2022 Sift All Rights Reserved Privacy & Terms

Your information will be used to contact you about our service and subscribe you to our direct marketing communications. You can, of course, unsubscribe at any time. Please see our Website Privacy Notice.